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Small-world effects in the majority-vote model
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We investigate the majority-vote model on small-world networks by rewiring the two-dimensional square
lattice. We observe that the introduction of long-range interactions does not remove the critical character of the
model, that is, the system still exhibits a well-defined phase transition. However, we find that now the critical
point is a monotonically increasing function of the rewiring probability. Moreover, we find that small-world
effects change the class of universality of the model.
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I. INTRODUCTION

Regular lattices and random graphs@1# are appropriate to
describe the topology of most systems studied in conden
matter physics. However, they do not represent well the
pology of several other systems found in nature. The sm
world ~SW! networks try to capture the main features o
served in some real networks, ranging from biological
social interacting systems@2,3#. The resulting networks in-
terpolate between an ordered finite-dimensional lattice
completely random graphs. Like regular lattices, small-wo
networks can be highly clustered, but they also possess s
characteristic path lengths, similar to those found in rand
networks@2,3#.

Here, we address the influence of SW effects on the
tropic majority-vote model. The majority-vote model is
simple nonequilibrium spin system with up-down symme
@4–7#. Besides its relevance for statistical mechanics, it is
interesting model for social behavior. When we apply s
models to social systems, a SW network is more appropr
as an underlying topology than a regular lattice@8#. In the
majority-vote model, each individual is influenced by
neighborhood. Individuals have the tendency to accept
choice of the majority in their neighborhood with probabili
pagree, and take the opposite view with probabilityq51
2pagree. Previous investigations of the majority-vote mod
on regular lattices showed that it exhibits a phase transi
with critical exponents that fall into the same class of u
versality as the equilibrium Ising model@5,7#.

Our objective in this work is to identify the critical cha
acter of the majority-vote model when we introduce lon
range interactions. In particular, we use Monte Carlo sim
lations and standard finite-size scaling techniques
determine the critical exponentsg/n andb/n, as well as the
critical curve for several values of the rewiring probability

The remainder of the paper is organized in the followi
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way: In Sec. II, we describe the isotropic majority-vo
model. In Sec. III, we define the relevant physical quantit
used in our analysis. In Sec. IV, we present our results
discussions. And finally, in Sec. V, we present our conc
sions.

II. MAJORITY-VOTE MODEL

In the isotropic majority-vote model, we ascribe a sp
variables i561 to each site on the lattice. We update t
system as follows: We choose sequentially a spin and de
mine the sign of the majority of the spins that are immedi
neighbors of the chosen spin. With probabilitypagree, the
chosen spin is given this sign. With probabilityq51
2pagree, the chosen spin is given the opposite sign. In
following, we also refer toq as the noise parameter. In term
of q, the probability of flipping is given by

w~s i !5
1

2 F12~122q!s iSS (
d51

z

s i 1dD G , ~1!

whereS(x)5sgn(x) for xÞ0, S(0)50, d denotes the near
est neighbor vector, andz is the coordination number. In a
regular square lattice, the neighborhood of a site consist
its four nearest neighbors. The probability~1! exhibits ‘‘up-
down’’ symmetry, i.e.,w(s i)5w(2s i) under the change o
states of the Ising spins in the neighborhood ofs i . For q
50, the model corresponds to the Ising model at tempe
ture T50.

In previous investigations, Monte Carlo simulations a
mean-field calculations have shown that the majority-v
model presents a phase transition from an ordered to a
ordered state at a critical value of the noise parameteq
5qc , which depends on the lattice topology@5–7#. Further-
more, the corresponding critical phenomenon is in the sa
class of universality as the equilibrium Ising model@9#, and
so the critical exponents depend only on the lattice dim
sionality. For the two-dimensional regular square lattice,qc
is '0.075 @5,7#. There are no previous results for th
majority-vote model on random graphs.
©2003 The American Physical Society04-1
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In this paper, we consider the majority-vote model on
SW network. With probabilityp8, we rewire each of thez
bonds connecting sitei to its nearest neighbors. In this wa
we can test a bond twice, which means that the actual v
of the rewiring probabilityp ~as defined in the original mode
@2#!, is related top8 by p5p8212p8(12p8). In fact, we
carried out simulations using both the standard proced
and the one we employ here, and we found results that w
completely equivalent. ‘‘Rewiring’’ in this context mean
that we move one end of the bond to a new randomly cho
site, i.e., we introduce some amount of long-range inter
tions ~short cuts!. Thus, the summation in Eq.~1! does not
consider nearest neighbors only, as in the case of a reg
lattice, but it runs over all those sites connected to spii.
Moreover, the rewiring algorithm alters the coordinati
number of the sites, although the mean connectivity is s
equal toz.

III. RELEVANT PHYSICAL QUANTITIES

In order to delineate the critical behavior of the model,
analyze in the magnetizationML , the magnetic susceptibility
xL , and the Binder’s fourth-order cumulantUL , defined,
respectively, by

ML5^^m&S&C5K K 1

NU(
1

N

s iU L
S
L

C

, ~2!

xL5N@^^m2&S&C2^^m&S&C
2 #, ~3!

and

UL512
^^m4&S&C

3^^m2&S&C
2

, ~4!

whereN5L2 is the total number of sites,^•••&S denotes that
the averages are taken in the stationary regime, and^•••&C
means configurational averages.

The above quantities are functions of the noise param
q and satisfy the following finite-size scaling relations@5#:

ML~q!5L2b/nM̃ ~L1/n«!, ~5!

xL~q!5Lg/nx̃~L1/n«!, ~6!

UL~q!5Ũ~L1/n«!, ~7!

where«5q2qc .
In Table I, we provide parameters of our Monte Ca

simulations. The difference between the total time and
equilibration time corresponds to the number of Monte Ca
steps~MCS! we use to estimate the averages for each r
The equilibration time is the number of MCS necessary
make the system reach the steady state regime. In our s
lation, one Monte Carlo step is accomplished after upda
all N5L2 spins. We have checked that the results do
change significantly when we choose longer equilibrat
time or total time of simulation. The simulations were pe
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formed using the standardC random generator. For all sets o
parameters, we have generated ten distinct configuration
SW networks, and we have simulated ten independent Mo
Carlo runs for each distinct configuration.

IV. RESULTS

In Fig. 1, we plot the magnetizationML as a function of
the noise parameterq. In part ~a! we showML for distinct
system sizesL and for fixedp50, which corresponds to the
isotropic majority-vote model on a regular square lattice
discussed in Ref.@5#. We clearly notice that there is a phas
transition from an ordered state (ML.0) to a disordered
state (ML'0). As expected for critical systems, the magn
tization displays a sharper transition when we consider lar
values ofL. For q.qc , the magnetizationML vanishes in
the limit L→`, whereas forq,qc it has a finite value. The
critical exponents fall into the same class of universality
the equilibrium Ising model@5–7#.

In Fig. 1~b!, we demonstrate the effect of long-range i
teractions in the network. From the plot, we can see that w
increased rewiring probabilityp, the order parameterML
shows a smoother transition as compared to the beha

TABLE I. System size, and the corresponding total time
simulation and equilibration time.

Lattice size Total time Equilibration time

L530 3000 MCS 2000 MCS

L550 5000 MCS 4000 MCS

L570 7000 MCS 5000 MCS

L5100 10000 MCS 7000 MCS

FIG. 1. Magnetization as a function ofq. In part ~a!, we have
p50 ~regular lattice! and the different curves correspond to diffe
ent lattice sizes. From top to bottom:L530, L550, L570, and
L5100. In part~b!, we have a fixed system size ofL550, and the
lines correspond to distinct values of the rewiring probability. Fro
left to right we havep50, 0.04, 0.1, 0.19, 0.51, and 0.75.
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seen forp50. We also observe that considerable deviat
occurs even for a small concentration of long-range inter
tions. We notice a collapse of the curves in the regime o
high concentration of long-range bonds~high p), that is, the
data points forp.0.75 fall over the curve forp50.75.
Moreover, the presence of long-range interactions in
model results in a larger robustness of the system aga
noise. In a social context, this means that the propagatio
information and the influence of the neighborhood is m
effective with long-range interactions. This effect can be e
ily understood in terms of our daily experience. We are m
easily convinced if several people who belong to disti
groups agree on a particular opinion. Similar high efficien
of information exchange has been observed in a variety
systems with small-world topology, such as neural syste
communication networks, and transport networks@10#.

In Fig. 2, we plot Binder’s fourth-order cumulantUL .
From the analysis ofUL , we determine the critical poin
qc(p) of the model. The critical pointqc(p) is estimated as
the point at which the different curves for different syste
sizesL intercept each other~see figure!. We show the typical
behavior ofUL for two distinct values of the probabilityp. In
part ~a!, we have p50.04 and in part~b!, we have p
50.75.

In Fig. 3, we show the phase diagramqc versusp. Our
measurements ofqc have an error of 0.002, which corre
sponds to a percentage error in the range of 1.2–2.5 %.
observe that the increase ofqc is more pronounced for sma
values ofp. Recent studies on the Ising model on SW n
works found similar qualitative dependence of the critic
temperature on the parameterp @11,12#.

In order to study the universality of the model, we al
investigated its critical exponents. In Fig. 4, we display t
value of the maximum of the susceptibility,xmax,L , versusL
in a log-log scale for several values ofp. From the slopes of
the straight lines, which correspond to the best fits to the d
points, we estimated the corresponding values of the crit
ratio g/n. We find that the introduction of long-range inte
actions changes the values of the critical exponents of

FIG. 2. Binder’s fourth-order cumulant as a function ofq. In
part ~a!, p50.04 and~b!, p50.75.
02610
n
c-
a

e
st
of
e
s-
t
t
y
of
s,

e

-
l

e

ta
al

e

model. For p50 ~the regular lattice!, we obtainedg/n
51.69, which is in a good agreement with previous resu
@5#. However, forp.0, the critical exponents change alon
the critical lineq5qc(p). In fact, we obtained a variation o
g/n from its value at p50 up to the valueg/n51.11
60.06 forp.0.01. For complementarity, we also calculat
the ratiob/n. The ratiob/n is obtained through theL de-
pendence of the magnetization calculated at the critical va
qc(p), as indicated by Eq.~5!. Our analysis yielded
p-dependent values for the critical ratiob/n satisfying
~within error bars of about 5%) the hyperscaling relatio
i.e., 2b/n5d2g/n, whered52 is the dimensionality of the
lattice. So, the present results indicate that the majority-v
models defined on a regular square lattice and on sm
world networks are in different universality classes.

FIG. 3. Phase diagram. The critical values of the noise par
eterqc as a function of the concentration of long-range interactio
p for the majority-vote model on two-dimensional SW network
The line is a guide to the eye.

FIG. 4. Maximum value of the susceptibilityxL versusL in a
log-log scale. The different data correspond to distinct values op.
From top to bottom,p50.0, 0.004, 0.01, 0.04, 0.1, 0.19, and 0.5
The exponent valuesg/n are 1.69(1), 1.49(7), 1.31(3), 1.12(4),
1.17(2), 1.11(4), and1.04(4), respectively.
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V. CONCLUSION

We have investigated the phase diagram and critical
havior of the majority-vote model on small-world networ
through Monte Carlo simulations and finite-size scali
analysis. The phase diagram indicates that the presenc
long-range interactions in the system results in a larger
bustness of the system against noise. For the critical be
ior, we found critical exponents that are dependent on
fraction of short cuts introduced in the system. In contras
the studies of the ferromagnetic transition@11–14# on small-
world networks, which suggest mean-field-like behavior
the transition, here we have obtained a well-defined ph
transition, indicating that the majority-vote models defin
.
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on a regular square lattice and on small-world networks
long to different universality classes.
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