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Small-world effects in the majority-vote model
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We investigate the majority-vote model on small-world networks by rewiring the two-dimensional square
lattice. We observe that the introduction of long-range interactions does not remove the critical character of the
model, that is, the system still exhibits a well-defined phase transition. However, we find that now the critical
point is a monotonically increasing function of the rewiring probability. Moreover, we find that small-world
effects change the class of universality of the model.
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[. INTRODUCTION way: In Sec. Il, we describe the isotropic majority-vote
model. In Sec. Ill, we define the relevant physical quantities
Regular lattices and random gragiig are appropriate to used in our analysis. In Sec. IV, we present our results and
describe the topology of most systems studied in condensediscussions. And finally, in Sec. V, we present our conclu-
matter physics. However, they do not represent well the toSions.
pology of several other systems found in nature. The small-

world (SM networks try to capture the main fe_aturgs ob- Il. MAJORITY-VOTE MODEL
served in some real networks, ranging from biological to
social interacting system®,3]. The resulting networks in-  In the isotropic majority-vote model, we ascribe a spin

terpolate between an ordered finite-dimensional lattice anslariable oj=*1 to each site on the lattice. We update the
completely random graphs. Like regular lattices, small-worldsystem as follows: We choose sequentially a spin and deter-
networks can be highly clustered, but they also possess smaiiine the sign of the majority of the spins that are immediate
characteristic path lengths, similar to those found in randonmeighbors of the chosen spin. With probabilipygee the
networks[2,3]. chosen spin is given this sign. With probability=1

Here, we address the influence of SW effects on the iso— pagee the chosen spin is given the opposite sign. In the
tropic majority-vote model. The majority-vote model is a following, we also refer t@ as the noise parameter. In terms
simple nonequilibrium spin system with up-down symmetryof g, the probability of flipping is given by
[4-7]. Besides its relevance for statistical mechanics, it is an
interesting model for social behavior. When we apply spin 1 z
models to social systems, a SW network is more appropriate w(oi)= E[ 1-(1-2q)0; S( Z 0'i+5)
as an underlying topology than a regular lattj@&. In the o=1
majority-vote model, each individual is influenced by its
neighborhood. Individuals have the tendency to accept thehereS(x)=sgn) for x#0, S(0)=0, § denotes the near-
choice of the majority in their neighborhood with probability est neighbor vector, angis the coordination number. In a
Pagree and take the opposite view with probability=1  regular square lattice, the neighborhood of a site consists of
— Pagree Previous investigations of the majority-vote model its four nearest neighbors. The probabilit) exhibits “up-
on regular lattices showed that it exhibits a phase transitioalown” symmetry, i.e.w(o;) =w(—o;) under the change of
with critical exponents that fall into the same class of uni-states of the Ising spins in the neighborhoodogf For q
versality as the equilibrium Ising modgs,7]. =0, the model corresponds to the Ising model at tempera-

Our objective in this work is to identify the critical char- ture T=0.
acter of the majority-vote model when we introduce long- In previous investigations, Monte Carlo simulations and
range interactions. In particular, we use Monte Carlo simumean-field calculations have shown that the majority-vote
lations and standard finite-size scaling techniques taonodel presents a phase transition from an ordered to a dis-
determine the critical exponenigr andB/v, as well as the ordered state at a critical value of the noise parameter,
critical curve for several values of the rewiring probability. =q., which depends on the lattice topoloffy—7]. Further-

The remainder of the paper is organized in the followingmore, the corresponding critical phenomenon is in the same

class of universality as the equilibrium Ising modi@], and
so the critical exponents depend only on the lattice dimen-

: ()
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TElectronic address: vivianel@caltech.edu is ~0.075 [5,7]. There are no previous results for the
*Electronic address: brady@df.ufpe.br majority-vote model on random graphs.
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In this paper, we consider the majority-vote model on a TABLE I. System size, and the corresponding total time of
SW network. With probabilityp’, we rewire each of the  simulation and equilibration time.
bonds connecting siteto its nearest neighbors. In this way,
we can test a bond twice, which means that the actual value Lattice size Total time Equilibration time
of the rewiring probabilityp (as defined in the original model

, ) PP ; L=30 3000 MCS 2000 MCS
[2]), is related top’ by p=p’“+2p’'(1—p’). In fact, we
carried out simulations using both the standard procedure L=50 5000 MCS 4000 MCS
and the one we employ here, and we found results that were
completely equivalent. “Rewiring” in this context means _
that we move one end of the bond to a new randomly chosen L=70 7000 MCS 5000 MCS
site, i.e., we introduce some amount of long-range interac-

L=100 10000 MCS 7000 MCS

tions (short cut$. Thus, the summation in Eq1l) does not
consider nearest neighbors only, as in the case of a regular
lattice, but it runs over all those sites connected to spin
Moreover, the rewiring algorithm alters the coordination
number of the sites, although the mean connectivity is stil
equal toz.

formed using the standaf@irandom generator. For all sets of
Iparameters, we have generated ten distinct configurations of
SW networks, and we have simulated ten independent Monte
Carlo runs for each distinct configuration.

I1l. RELEVANT PHYSICAL QUANTITIES IV RESULTS
In order to delineate the critical behavior of the model, we
analyze in the magnetizatiovi, , the magnetic susceptibility h
XL, and the Binder’s fourth-order cumulakt, , defined,

respectively, by

1
ML=<<m>S>C=< <N

X =N[{(m?)s)c—((M)s)2], 3)

In Fig. 1, we plot the magnetizatiod, as a function of

e noise parametey. In part(a) we showM, for distinct
system size& and for fixedp= 0, which corresponds to the
isotropic majority-vote model on a regular square lattice as

N > discussed in Ref5]. We clearly notice that there is a phase
S>

> o (2)  transition from an ordered stateM(>0) to a disordered
1 state (M ~0). As expected for critical systems, the magne-
tization displays a sharper transition when we consider larger
values ofL. For g>q., the magnetizatioM vanishes in
the limit L— o, whereas foig<q. it has a finite value. The
critical exponents fall into the same class of universality as
the equilibrium Ising mod€e]5-7].
{(mMs)c In Fig. 1(b), we demonstrate the effect of long-range in-
Ll (4)  teractions in the network. From the plot, we can see that with
3((m9s)c increased rewiring probabilitp, the order parameteM
shows a smoother transition as compared to the behavior

and

whereN=L? is the total number of siteg; - - )5 denotes that
the averages are taken in the stationary regime,{and)c

L L b T T I
means configurational averages. ® .
The above quantities are functions of the noise paramete 11 ®
g and satisfy the following finite-size scaling relatigrs: 08|~ - 08 -
Mi(q)=L"#""M(L ), (5)
06— -1 06— -
xu(@=L""x(LYe), 6 =
- 04 — 04— —
U(@)=0(L"s), (7
[ e—eL=30 N [ e—e p=0.0000
—a [ =50 m—a p=0.0396
wheree=q—0c. o2 20 s gt -
In Table I, we provide parameters of our Monte Carlo I || ep=0s100
simulations. The difference between the total time and the 1 J 1 H‘F‘f”"” | | .
equilibration time corresponds to the number of Monte Carlo % o005 o1 o5 02 0 o005 01 05 02
steps(MCS) we use to estimate the averages for each run. ! 4

The equilibration time is the number of MC_S necessary 10 G, 1. Magnetization as a function of In part (a), we have
make the system reach the steady state regime. In our Simy=g (regular lattice and the different curves correspond to differ-
lation, one Monte Carlo step is accomplished after updatingnt |attice sizes. From top to bottora=30, L=50, L=70, and

all N=L2? spins. We have checked that the results do not =100. In part(b), we have a fixed system size bf=50, and the
change significantly when we choose longer equilibrationines correspond to distinct values of the rewiring probability. From
time or total time of simulation. The simulations were per-left to right we havep=0, 0.04, 0.1, 0.19, 0.51, and 0.75.
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FIG. 2. Binder’s fourth-order cumulant as a function @fin FIG. 3. Phase diagram. The critical values of the noise param-
part(a), p=0.04 and(b), p=0.75. eterq, as a function of the concentration of long-range interactions

p for the majority-vote model on two-dimensional SW networks.
seen forp=0. We also observe that considerable deviationThe line is a guide to the eye.
occurs even for a small concentration of long-range interac-
tions. We notice a collapse of the curves in the regime of anodel. Forp=0 (the regular lattice we obtainedy/v
high concentration of long-range bon@sgh p), that is, the  =1.69, which is in a good agreement with previous results
data points forp>0.75 fall over the curve fopp=0.75. [5]. However, forp>0, the critical exponents change along
Moreover, the presence of long-range interactions in thehe critical lineq=q.(p). In fact, we obtained a variation of
model results in a larger robustness of the system againgt/» from its value atp=0 up to the valuey/v=1.11
noise. In a social context, this means that the propagation of 0.06 forp>0.01. For complementarity, we also calculated
information and the influence of the neighborhood is morethe ratio 8/v. The ratio8/v is obtained through thé de-
effective with long-range interactions. This effect can be easpendence of the magnetization calculated at the critical value
ily understood in terms of our daily experience. We are mosty.(p), as indicated by Eq.(5). Our analysis yielded
easily convinced if several people who belong to distinctp-dependent values for the critical ratig/v satisfying
groups agree on a particular opinion. Similar high efficiency(within error bars of about 5%) the hyperscaling relation,
of information exchange has been observed in a variety ofe., 28/v=d— y/v, whered=2 is the dimensionality of the
systems with small-world topology, such as neural systemdattice. So, the present results indicate that the majority-vote
communication networks, and transport netwdrk8|. models defined on a regular square lattice and on small-

In Fig. 2, we plot Binder’s fourth-order cumulatt, .  world networks are in different universality classes.

From the analysis otJ_, we determine the critical point
gc(p) of the model. The critical poing.(p) is estimated as
the point at which the different curves for different system 3
sizesL intercept each othdsee figureé We show the typical
behavior ofU, for two distinct values of the probability. In

; ; — ;

part (@), we havep=0.04 and in part(b), we havep

=0.75. 100~ .
In Fig. 3, we show the phase diagragp versusp. Our T OF 1

measurements ofi, have an error of 0.002, which corre- .§ [ 1

sponds to a percentage error in the range of 1.2—-2.5%. Wi L i

observe that the increase @f is more pronounced for small L 1

values ofp. Recent studies on the Ising model on SW net-
works found similar qualitative dependence of the critical
temperature on the paramefef11,17.

In order to study the universality of the model, we also 1ol e " s
. . . Lo . . 26 38 58 86
investigated its critical exponents. In Fig. 4, we display the
value of the maximum of the susceptibilityy,ay, , versusL
in a log-log scale for several values jpf From the slopes of FIG. 4. Maximum value of the susceptibility, versusL in a
the straight lines, which correspond to the best fits to the dat@g-log scale. The different data correspond to distinct valugs of
points, we estimated the corresponding values of the criticatrom top to bottomp=0.0, 0.004, 0.01, 0.04, 0.1, 0.19, and 0.51.
ratio y/v. We find that the introduction of long-range inter- The exponent valueg/v are 1.691), 1.497), 1.31(3), 1.14),
actions changes the values of the critical exponents of th&.172), 1.14), and1.044), respectively.
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V. CONCLUSION on a regular square lattice and on small-world networks be-

We have investigated the phase diagram and critical beIp ng to different universality classes.

havior of the majority-vote model on small-world networks
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